Complement translation

From Rigid Geometric Algebra
Revision as of 00:26, 26 August 2023 by Eric Lengyel (talk | contribs) (Eric Lengyel moved page Dual translation to Reciprocal translation without leaving a redirect)
Jump to navigation Jump to search

A dual translation is a proper isometry of dual Euclidean space.

The specific kind of dual motor

$$\mathbf T = t_x \mathbf e_{41} + t_y \mathbf e_{42} + t_z \mathbf e_{43} + \mathbf 1$$

performs a perspective projection in the direction of $$\mathbf t = (t_x, t_y, t_z)$$ with the focal length given by

$$g = \dfrac{1}{2\Vert \mathbf t \Vert}$$ .

Example

The left image below shows the flow field in the x-z plane for the translation $$\mathbf T = -\frac{1}{2} \mathbf e_{12} + {\large\unicode{x1d7d9}}$$. The right image shows the flow field in the x-z plane for the dual translation $$\mathbf T = \frac{1}{2} \mathbf e_{43} + \mathbf 1$$. The yellow line is fixed as a whole, but points on it move to other locations on the line. All points with $$z = 0$$, represented by the blue plane, are fixed. The white plane at $$z = -1$$ represents the division between regions where the signs of projected $$z$$ coordinates are positive and negative.

Calculation

The exact dual translation calculations for points, lines, and planes are shown in the following table.

Type Dual Translation
Point

$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$

$$\mathbf T \mathbin{\unicode{x27D1}} \mathbf p \mathbin{\unicode{x27D1}} \mathbf{\tilde T} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + (2t_xp_x + 2t_yp_y + 2t_zp_z + p_w) \mathbf e_4$$
Line

$$\begin{split}\mathbf L =\, &v_x \mathbf e_{41} + v_y \mathbf e_{42} + v_z \mathbf e_{43} \\ +\, &m_x \mathbf e_{23} + m_y \mathbf e_{31} + m_z \mathbf e_{12}\end{split}$$

$$\mathbf T \mathbin{\unicode{x27D1}} \mathbf L \mathbin{\unicode{x27D1}} \mathbf{\tilde T} = (v_x - 2t_ym_z + 2t_zm_y)\mathbf e_{41} + (v_y - 2t_zm_x + 2t_xm_z)\mathbf e_{42} + (v_z - 2t_xm_y - 2t_ym_x)\mathbf e_{43} + m_x \mathbf e_{23} + m_y \mathbf e_{31} + m_z \mathbf e_{12}$$
Plane

$$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$

$$\mathbf T \mathbin{\unicode{x27D1}} \mathbf f \mathbin{\unicode{x27D1}} \mathbf{\tilde T} = (f_x - 2t_xf_w) \mathbf e_{234} + (f_y - 2t_yf_w) \mathbf e_{314} + (f_z - 2t_zf_w) \mathbf e_{124} + f_w \mathbf e_{321}$$

Dual Translation to Horizon

A plane $$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ is dual translated to the horizon by the operator

$$\mathbf T = \dfrac{f_{x\vphantom{y}}}{2f_w} \mathbf e_{41} + \dfrac{f_y}{2f_w} \mathbf e_{42} + \dfrac{f_{z\vphantom{y}}}{2f_w} \mathbf e_{32} + \mathbf 1$$ .

See Also