Duals: Difference between revisions
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 28: | Line 28: | ||
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ . | :$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ . | ||
== Geometries == | |||
The bulk duals and weight duals of geometries in the 4D rigid geometric algebra are listed in the following table. | |||
{| class="wikitable" | |||
! Type !! Bulk Dual !! Weight Dual | |||
|- | |||
| style="padding: 12px;" | [[Point]] | |||
| style="padding: 12px;" | $$\mathbf p^\unicode["segoe ui symbol"]{x2605} = p_x \mathbf e_{423} + p_y \mathbf e_{431} + p_z \mathbf e_{412}$$ | |||
| style="padding: 12px;" | $$\mathbf p^\unicode["segoe ui symbol"]{x2606} = p_w \mathbf e_{321}$$ | |||
|- | |||
| style="padding: 12px;" | [[Line]] | |||
| style="padding: 12px;" | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2605} = -l_{mx} \mathbf e_{41} - l_{my} \mathbf e_{42} - l_{mz} \mathbf e_{43}$$ | |||
| style="padding: 12px;" | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -l_{vx} \mathbf e_{23} - l_{vy} \mathbf e_{31} - l_{vz} \mathbf e_{12}$$ | |||
|- | |||
| style="padding: 12px;" | [[Plane]] | |||
| style="padding: 12px;" | $$\mathbf g^\unicode["segoe ui symbol"]{x2605} = -g_w \mathbf e_4$$ | |||
| style="padding: 12px;" | $$\mathbf g^\unicode["segoe ui symbol"]{x2606} = -g_x \mathbf e_1 - g_y \mathbf e_2 - g_z \mathbf e_3$$ | |||
|} | |||
== See Also == | == See Also == | ||
Line 33: | Line 53: | ||
* [[Complements]] | * [[Complements]] | ||
* [[Bulk and weight]] | * [[Bulk and weight]] | ||
== In the Book == | |||
* Duals are introduced in Section 2.12. |
Revision as of 05:05, 13 April 2024
Every object in projective geometric algebra has two duals derived from the metric tensor, called the metric dual and metric antidual.
Dual
The metric dual or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as
- $$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,
where $$\mathbf G$$ is the $$16 \times 16$$ metric exomorphism matrix. In projective geometric algebra, this dual is also called the bulk dual because it is the complement of the bulk components, as expressed by
- $$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf u_\unicode{x25CF}}$$ .
The bulk dual satisfies the following identity based on the geometric product:
- $$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \tilde{\mathbf u} \mathbin{\unicode{x27D1}} {\large\unicode{x1D7D9}}$$ .
Antidual
The metric antidual or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as
- $$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,
where $$\mathbb G$$ is the $$16 \times 16$$ metric antiexomorphism matrix. In projective geometric algebra, this dual is also called the weight dual because it is the complement of the weight components, as expressed by
- $$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbf u_\unicode{x25CB}}$$ .
The weight dual satisfies the following identity based on the geometric antiproduct:
- $$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ .
Geometries
The bulk duals and weight duals of geometries in the 4D rigid geometric algebra are listed in the following table.
Type | Bulk Dual | Weight Dual |
---|---|---|
Point | $$\mathbf p^\unicode["segoe ui symbol"]{x2605} = p_x \mathbf e_{423} + p_y \mathbf e_{431} + p_z \mathbf e_{412}$$ | $$\mathbf p^\unicode["segoe ui symbol"]{x2606} = p_w \mathbf e_{321}$$ |
Line | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2605} = -l_{mx} \mathbf e_{41} - l_{my} \mathbf e_{42} - l_{mz} \mathbf e_{43}$$ | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -l_{vx} \mathbf e_{23} - l_{vy} \mathbf e_{31} - l_{vz} \mathbf e_{12}$$ |
Plane | $$\mathbf g^\unicode["segoe ui symbol"]{x2605} = -g_w \mathbf e_4$$ | $$\mathbf g^\unicode["segoe ui symbol"]{x2606} = -g_x \mathbf e_1 - g_y \mathbf e_2 - g_z \mathbf e_3$$ |
See Also
In the Book
- Duals are introduced in Section 2.12.