Complement translation: Difference between revisions
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) |
||
Line 44: | Line 44: | ||
A plane $$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ is reciprocal translated to the horizon by the operator | A plane $$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ is reciprocal translated to the horizon by the operator | ||
:$$\mathbf T = \dfrac{f_{x\vphantom{y}}}{2f_w} \mathbf e_{41} + \dfrac{f_y}{2f_w} \mathbf e_{42} + \dfrac{f_{z\vphantom{y}}}{2f_w} \mathbf e_{ | :$$\mathbf T = \dfrac{f_{x\vphantom{y}}}{2f_w} \mathbf e_{41} + \dfrac{f_y}{2f_w} \mathbf e_{42} + \dfrac{f_{z\vphantom{y}}}{2f_w} \mathbf e_{43} + \mathbf 1$$ . | ||
== See Also == | == See Also == |
Revision as of 00:31, 1 October 2023
A reciprocal translation is a proper isometry of reciprocal Euclidean space.
The specific kind of reciprocal motor
- $$\mathbf T = t_x \mathbf e_{41} + t_y \mathbf e_{42} + t_z \mathbf e_{43} + \mathbf 1$$
performs a perspective projection in the direction of $$\mathbf t = (t_x, t_y, t_z)$$ with the focal length given by
- $$g = \dfrac{1}{2\Vert \mathbf t \Vert}$$ .
Example
The left image below shows the flow field in the x-z plane for the translation $$\mathbf T = -\frac{1}{2} \mathbf e_{12} + {\large\unicode{x1d7d9}}$$. The right image shows the flow field in the x-z plane for the reciprocal translation $$\mathbf T = \frac{1}{2} \mathbf e_{43} + \mathbf 1$$. The yellow line is fixed as a whole, but points on it move to other locations on the line. All points with $$z = 0$$, represented by the blue plane, are fixed. The white plane at $$z = -1$$ represents the division between regions where the signs of projected $$z$$ coordinates are positive and negative.
Calculation
The exact reciprocal translation calculations for points, lines, and planes are shown in the following table.
Type | Reciprocal Translation |
---|---|
Point
$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ |
$$\mathbf T \mathbin{\unicode{x27D1}} \mathbf p \mathbin{\unicode{x27D1}} \mathbf{\tilde T} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + (2t_xp_x + 2t_yp_y + 2t_zp_z + p_w) \mathbf e_4$$ |
Line
$$\begin{split}\mathbf L =\, &v_x \mathbf e_{41} + v_y \mathbf e_{42} + v_z \mathbf e_{43} \\ +\, &m_x \mathbf e_{23} + m_y \mathbf e_{31} + m_z \mathbf e_{12}\end{split}$$ |
$$\mathbf T \mathbin{\unicode{x27D1}} \mathbf L \mathbin{\unicode{x27D1}} \mathbf{\tilde T} = (v_x - 2t_ym_z + 2t_zm_y)\mathbf e_{41} + (v_y - 2t_zm_x + 2t_xm_z)\mathbf e_{42} + (v_z - 2t_xm_y - 2t_ym_x)\mathbf e_{43} + m_x \mathbf e_{23} + m_y \mathbf e_{31} + m_z \mathbf e_{12}$$ |
Plane
$$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ |
$$\mathbf T \mathbin{\unicode{x27D1}} \mathbf f \mathbin{\unicode{x27D1}} \mathbf{\tilde T} = (f_x - 2t_xf_w) \mathbf e_{234} + (f_y - 2t_yf_w) \mathbf e_{314} + (f_z - 2t_zf_w) \mathbf e_{124} + f_w \mathbf e_{321}$$ |
Reciprocal Translation to Horizon
A plane $$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ is reciprocal translated to the horizon by the operator
- $$\mathbf T = \dfrac{f_{x\vphantom{y}}}{2f_w} \mathbf e_{41} + \dfrac{f_y}{2f_w} \mathbf e_{42} + \dfrac{f_{z\vphantom{y}}}{2f_w} \mathbf e_{43} + \mathbf 1$$ .