Metrics: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
(Created page with "The ''metric'' used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by :$$\mathfrak g = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\\end{bmatrix}$$ . The ''metric exomorphism matrix'' $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below. 420px The ''metri...")
 
No edit summary
Line 14: Line 14:


[[Image:antimetric-rga-3d.svg|420px]]
[[Image:antimetric-rga-3d.svg|420px]]
The product of the metric exomorphism matrix $$\mathbf G$$ and metric antiexomorphism matrix $$\mathbb G$$ for any metric $$\mathfrak g$$ is always equal to the $$16 \times 16$$ identity matrix times the determinant of $$\mathfrak g$$. That is, $$\mathbf G \mathbb G = \det(\mathfrak g) \mathbf I$$.
The metric and antimetric determine [[bulk and weight]], [[duals]], [[dot products]], and [[geometric products]].
== See Also ==
* [[Bulk and weight]]
* [[Duals]]
* [[Dot products]]

Revision as of 01:53, 13 April 2024

The metric used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by

$$\mathfrak g = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\\end{bmatrix}$$ .

The metric exomorphism matrix $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.

The metric antiexomorphism matrix $$\mathbb G$$, often called the "antimetric", corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.

The product of the metric exomorphism matrix $$\mathbf G$$ and metric antiexomorphism matrix $$\mathbb G$$ for any metric $$\mathfrak g$$ is always equal to the $$16 \times 16$$ identity matrix times the determinant of $$\mathfrak g$$. That is, $$\mathbf G \mathbb G = \det(\mathfrak g) \mathbf I$$.

The metric and antimetric determine bulk and weight, duals, dot products, and geometric products.

See Also