Euclidean distance: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
The Euclidean distance $$d(\mathbf a, \mathbf b)$$ between two geometric objects '''a''' and '''b''' can be measured by the homogeneous [[magnitude]] given by
The Euclidean distance $$d(\mathbf a, \mathbf b)$$ between two geometric objects '''a''' and '''b''' can be measured by the homogeneous [[magnitude]] given by


:$$d(\mathbf a, \mathbf b) = \left\Vert\operatorname{att}(\mathbf a \wedge \mathbf b)\right\Vert_\unicode{x25CF} + \left\Vert\mathbf a \vee \operatorname{att}(\mathbf b)\right\Vert_\unicode{x25CB}$$.
:$$d(\mathbf a, \mathbf b) = \left\Vert\operatorname{att}(\mathbf a \wedge \mathbf b)\right\Vert_\unicode{x25CF} + \left\Vert\mathbf a \wedge \operatorname{att}(\mathbf b)\right\Vert_\unicode{x25CB}$$.


The following table lists formulas for Euclidean distances between the main types of geometric objects in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$. These formulas are general and do not require the geometric objects to be [[unitized]]. Most of them become simpler if unitization can be assumed.
The following table lists formulas for Euclidean distances between the main types of geometric objects in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$. These formulas are general and do not require the geometric objects to be [[unitized]]. Most of them become simpler if unitization can be assumed.

Revision as of 01:38, 3 August 2023

The Euclidean distance $$d(\mathbf a, \mathbf b)$$ between two geometric objects a and b can be measured by the homogeneous magnitude given by

$$d(\mathbf a, \mathbf b) = \left\Vert\operatorname{att}(\mathbf a \wedge \mathbf b)\right\Vert_\unicode{x25CF} + \left\Vert\mathbf a \wedge \operatorname{att}(\mathbf b)\right\Vert_\unicode{x25CB}$$.

The following table lists formulas for Euclidean distances between the main types of geometric objects in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$. These formulas are general and do not require the geometric objects to be unitized. Most of them become simpler if unitization can be assumed.

The points, lines, and planes appearing in the distance formulas are defined as follows:

$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
$$\mathbf q = q_x \mathbf e_1 + q_y \mathbf e_2 + q_z \mathbf e_3 + q_w \mathbf e_4$$
$$\mathbf k = k_{vx} \mathbf e_{41} + k_{vy} \mathbf e_{42} + k_{vz} \mathbf e_{43} + k_{mx} \mathbf e_{23} + k_{my} \mathbf e_{31} + k_{mz} \mathbf e_{12}$$
$$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
Formula Interpretation Illustration
$$d(\mathbf p, \mathbf q) = \sqrt{(q_xp_w - p_xq_w)^2 + (q_yp_w - p_yq_w)^2 + (q_zp_w - p_zq_w)^2} + |p_wq_w|{\large\unicode{x1D7D9}}$$ Distance $$d$$ between points $$\mathbf p$$ and $$\mathbf q$$.
$$d(\mathbf p, \boldsymbol l) = \sqrt{(l_{vy} p_z - l_{vz} p_y + l_{mx} p_w)^2 + (l_{vz} p_x - l_{vx} p_z + l_{my} p_w)^2 + (l_{vx} p_y - l_{vy} p_x + l_{mz} p_w)^2} + {\large\unicode{x1D7D9}}\sqrt{p_w^2(l_{vx}^2 + l_{vy}^2 + l_{vz}^2)}$$ Perpendicular distance $$d$$ between point $$\mathbf p$$ and line $$\boldsymbol l$$.
$$d(\mathbf p, \mathbf g) = |p_xg_x + p_yg_y + p_zg_z + p_wg_w| + {\large\unicode{x1D7D9}}\sqrt{p_w^2(g_x^2 + g_y^2 + g_z^2)}$$ Perpendicular distance $$d$$ between point $$\mathbf p$$ and plane $$\mathbf g$$.
$$d(\boldsymbol l, \mathbf k) = |l_{vx} k_{mx} + l_{vy} k_{my} + l_{vz} k_{mz} + k_{vx} l_{mx} + k_{vy} l_{my} + k_{vz} l_{mz}| + {\large\unicode{x1D7D9}}\sqrt{(l_{vy} k_{vz} - l_{vz} k_{vy})^2 + (l_{vz} k_{vx} - l_{vx} k_{vz})^2 + (l_{vx} k_{vy} - l_{vy} k_{vx})^2}$$ Perpendicular distance $$d$$ between lines $$\mathbf k$$ and $$\boldsymbol l$$.

See Also