Metrics: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
(Created page with "The ''metric'' used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by :$$\mathfrak g = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\\end{bmatrix}$$ . The ''metric exomorphism matrix'' $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below. 420px The ''metri...")
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 14: Line 14:


[[Image:antimetric-rga-3d.svg|420px]]
[[Image:antimetric-rga-3d.svg|420px]]
The product of the metric exomorphism matrix $$\mathbf G$$ and metric antiexomorphism matrix $$\mathbb G$$ for any metric $$\mathfrak g$$ is always equal to the $$16 \times 16$$ identity matrix times the determinant of $$\mathfrak g$$. That is, $$\mathbf G \mathbb G = \det(\mathfrak g) \mathbf I$$.
The metric and antimetric determine [[bulk and weight]], [[duals]], [[dot products]], and [[geometric products]].
== In the Book ==
* The metric and antimetric are introduced in Sections 2.8.1 and 2.8.2.
== See Also ==
* [[Bulk and weight]]
* [[Duals]]
* [[Dot products]]

Latest revision as of 23:31, 13 April 2024

The metric used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by

$$\mathfrak g = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\\end{bmatrix}$$ .

The metric exomorphism matrix $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.

The metric antiexomorphism matrix $$\mathbb G$$, often called the "antimetric", corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.

The product of the metric exomorphism matrix $$\mathbf G$$ and metric antiexomorphism matrix $$\mathbb G$$ for any metric $$\mathfrak g$$ is always equal to the $$16 \times 16$$ identity matrix times the determinant of $$\mathfrak g$$. That is, $$\mathbf G \mathbb G = \det(\mathfrak g) \mathbf I$$.

The metric and antimetric determine bulk and weight, duals, dot products, and geometric products.

In the Book

  • The metric and antimetric are introduced in Sections 2.8.1 and 2.8.2.

See Also