Join and meet: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 40: | Line 40: | ||
| style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &-p_wg_x \mathbf e_{41} - p_wg_y \mathbf e_{42} - p_wg_z \mathbf e_{43} \\ +\, &(p_zg_y - p_yg_z)\,\mathbf e_{23} + (p_xg_z - p_zg_x)\,\mathbf e_{31} + (p_yg_x - p_xg_y)\,\mathbf e_{12}\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &-p_wg_x \mathbf e_{41} - p_wg_y \mathbf e_{42} - p_wg_z \mathbf e_{43} \\ +\, &(p_zg_y - p_yg_z)\,\mathbf e_{23} + (p_xg_z - p_zg_x)\,\mathbf e_{31} + (p_yg_x - p_xg_y)\,\mathbf e_{12}\end{split}$$ | ||
| style="padding: 12px;" | Line containing point $$\mathbf p$$ and perpendicular to plane $$\mathbf g$$. | | style="padding: 12px;" | Line containing point $$\mathbf p$$ and perpendicular to plane $$\mathbf g$$. | ||
| style="padding: 12px;" | [[Image: | | style="padding: 12px; text-align: center;" | [[Image:plane_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} =\, &-p_w l_{vx} \mathbf e_{423} - p_w l_{vy} \mathbf e_{431} - p_w l_{vz} \mathbf e_{412} \\ +\, &(p_x l_{vx} + p_y l_{vy} + p_z l_{vz})\,\mathbf e_{321}\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} =\, &-p_w l_{vx} \mathbf e_{423} - p_w l_{vy} \mathbf e_{431} - p_w l_{vz} \mathbf e_{412} \\ +\, &(p_x l_{vx} + p_y l_{vy} + p_z l_{vz})\,\mathbf e_{321}\end{split}$$ | ||
| style="padding: 12px;" | Plane containing point $$\mathbf p$$ and perpendicular to line $$\boldsymbol l$$. | | style="padding: 12px;" | Plane containing point $$\mathbf p$$ and perpendicular to line $$\boldsymbol l$$. | ||
| style="padding: 12px;" | [[Image: | | style="padding: 12px; text-align: center;" | [[Image:line_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &(l_{vy} g_z - l_{vz} g_y)\,\mathbf e_{423} + (l_{vz} g_x - l_{vx} g_z)\,\mathbf e_{431} + (l_{vx} g_y - l_{vy} g_x)\,\mathbf e_{412} \\ -\, &(l_{mx} g_x + l_{my} g_y + l_{mz} g_z)\,\mathbf e_{321}\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &(l_{vy} g_z - l_{vz} g_y)\,\mathbf e_{423} + (l_{vz} g_x - l_{vx} g_z)\,\mathbf e_{431} + (l_{vx} g_y - l_{vy} g_x)\,\mathbf e_{412} \\ -\, &(l_{mx} g_x + l_{my} g_y + l_{mz} g_z)\,\mathbf e_{321}\end{split}$$ | ||
Line 50: | Line 50: | ||
Normal direction is $$(0,0,0)$$ if $$\boldsymbol l$$ is perpendicular to $$\mathbf g$$. | Normal direction is $$(0,0,0)$$ if $$\boldsymbol l$$ is perpendicular to $$\mathbf g$$. | ||
| style="padding: 12px;" | [[Image: | | style="padding: 12px; text-align: center;" | [[Image:plane_connect_line.svg|200px]] | ||
|} | |} | ||
Latest revision as of 20:34, 26 October 2023
The join is a binary operation that calculates the higher-dimensional geometry containing its two operands, similar to a union. The meet is another binary operation that calculates the lower-dimensional geometry shared by its two operands, similar to an intersection.
The points, lines, and planes appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
- $$\mathbf q = q_x \mathbf e_1 + q_y \mathbf e_2 + q_z \mathbf e_3 + q_w \mathbf e_4$$
- $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
- $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
- $$\mathbf h = h_x \mathbf e_{423} + h_y \mathbf e_{431} + h_z \mathbf e_{412} + h_w \mathbf e_{321}$$
The join operation is performed by taking the wedge product between two geometric objects. The meet operation is performed by taking the antiwedge product between two geometric objects.